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A B S T R A C T   

Premature ventricular contraction (PVC) is a common and harmless cardiac arrhythmia that can be asymp
tomatic or cause palpitations and chest pain in rare instances. However, frequent PVCs can lead to more serious 
arrhythmias, such as atrial fibrillation. Several PVC detection models have been proposed to enable early 
diagnosis of arrhythmias; however, they lack reliability and generalizability due to the variability of electro
cardiograms across different settings and noise levels. Such weaknesses are known to aggravate with new data. 
Therefore, we present a deep learning model with a novel attention mechanism that can detect PVC accurately, 
even on unseen electrocardiograms with various noise levels. Our method, called the Denoise and Contrast 
Attention Module (DCAM), is a two-step process that denoises signals with a convolutional neural network (CNN) 
in the frequency domain and attends to differences. It focuses on differences in the morphologies and intervals of 
the remaining beats, mimicking how trained clinicians identify PVCs. Using three different encoder types, we 
evaluated 1D U-Net with DCAM on six external test datasets. The results showed that DCAM significantly 
improved the F1-score of PVC detection performance on all six external datasets and enhanced the performance 
of balancing both the sensitivity and precision of the models, demonstrating its robustness and generalization 
ability regardless of the encoder type. This demonstrates the need for a trainable denoising process before 
applying the attention mechanism. Our DCAM could contribute to the development of a reliable algorithm for 
cardiac arrhythmia detection under real clinical electrocardiograms.   

1. Introduction 

Premature ventricular contractions (PVCs) are primarily asymp
tomatic and commonly observed in most individuals monitored for more 
than a few hours [1]. PVC is frequently observed in patients undergoing 
surgery regardless of general or regional anesthesia. Typically, 

intraoperative PVC tends to be negligible as its clinical significance is 
relatively limited. However, every PVC cannot be considered an inno
cent arrhythmia and should be monitored with caution in specific in
stances. Specifically, a new onset of PVC could be considered a 
potentially serious event as it may lead to fatal arrhythmias such as 
ventricular tachycardia or ventricular fibrillation [2]. Furthermore, 
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PVCs may occasionally indicate underlying structural heart disease [3] 
or be a precursor of higher arrhythmogenic potential [4,5]. 

Therefore, considerable research has been conducted to develop al
gorithms to detect PVCs in electrocardiograms (ECGs); however, they 
have not reached the level of practical clinical application [6–12]. 
Technically, PVC can be detected in comprehensively as its typical 
characteristic is a single irregular ectopic beat. However, the identifi
cation of PVCs can be particularly difficult on several occasions if the 
signal is contaminated with noise or mixed with another arrhythmia, 
such as atrial fibrillation (AF). In addition, inappropriate detection of 
PVCs and false alarms may lead to significant fatigue, which negatively 
affects the attending physicians’ vigilance. Furthermore, repeated false 
alarms may lead to a neglect of precautions and serious consequences 
[13]. To achieve clinically applicable level of technology, an accurate 
and sophisticated algorithm was required to reliably identify PVCs even 
in ECGs that contained noise. 

Recent advances in smart biosignal measurement devices and ma
chine learning analysis algorithms have led to PVC detection in ECG 
signals [14–16]. Zhou et al. [17] presented a method for detecting PVCs 
that combines convolutional neural networks (CNN), long short-term 
memory (LSTM), and rule inference. Their method achieved good per
formance considering that it was an early deep learning model for 
electrocardiogram (ECG) analysis. Wang et al. [18] proposed a 2D 
CNN-based method to extract ECG curves from scanned ECG images of 
clinical ECG reports without digital ECG data and segment and classify 
heartbeats. Naz et al. [19] and Ullah et al. [20] adopted a similar 
approach to Wang et al. and used a 2D CNN-based classification model 
pre-trained on ImageNet and achieved high diagnostic performance. Oh 
et al. [21] first modified the U-Net [22] and modified the model to 
perform beat-wise analysis on heterogeneously segmented ECGs of 
varying lengths extracted from the MIT-BIH arrhythmia dataset. Hu 
et al. [23] introduced a transformer-based model to achieve high 
detection performance for multiple arrhythmias other than PVCs on 
three public datasets. While the above studies have shown high per
formance for PVC detection, they only addressed internal test datasets, 
which limits true performance evaluation. 

As high performance on external datasets can demonstrate real- 
world model performance, a few studies have recently evaluated PVC 
detection models in ECGs. Petryshak et al. [24] proposed a two-stage 
pipeline that first segments QRS complexes (QRS) and then classifies 
PVCs. They tested their model on two public datasets using cross-dataset 
paradigms and achieved a high F1-score for both tasks. Ivora et al. [25] 
presented a comprehensive model evaluation protocol using 12 public 
datasets for QRS detection and 4 databases for arrhythmia detection. 
Using a large private dataset, they trained their model and demonstrated 
excellent micro-F1 scores. Although these two studies achieved PVC 
detection performance on external test datasets, there is still a need to 
improve model performance before they can be considered for clinical 
application. 

Moreover, artificial intelligence has experienced a surge in research 
endeavors to enhance the performance of deep learning models by 
employing attention mechanisms [26], a concept originating from lan
guage models that assign greater weight to the most pertinent vector 
among the neighboring vectors. Prominent attention mechanism mod
ules include the Transformer [27], Convolutional Block Attention 
Module (CBAM) [28], Non-Local Neural Networks (NLNN) [29], and 
Squeeze-and-Excitation (SE) [30]. The attention module is also reported 
to improve the performance of deep learning models in time series 
analysis [31]. However, only a few studies have been interested in 
improving feature learning performance and not in evaluating the 
impact of attention mechanisms on performance on an unseen dataset 
[32,33]. Furthermore, attention modules may introduce dataset-specific 
biases and reduce the ability of models to generalize to unseen data [34]. 
To substantiate these claims, it is imperative to investigate whether the 
application of attention modules improves performance on unseen 
datasets. In this study, we propose and evaluate a novel Denoise and 

Contrast Attention Module (DCAM) to improve the PVC detection per
formance of deep learning models on an unseen ECG dataset. 

2. Method 

In this section, the model architecture, data collection, and model 
evaluation protocol are introduced. In particular, a brief overview of the 
seven datasets, including training and external test datasets. The ap
pendix provides detailed information on these seven datasets. 

2.1. Denoise and contrast attention module (fDCAM) 

To improve the performance of a deep learning model for PVC 
detection, a CNN-based attention module could be applied to better 
capture the principles of how clinical experts detect PVCs. Although 
attention mechanisms are acknowledged to improve model perfor
mance, we assume a diagnostic approach similar to anesthesiologists’ 
approach to detecting PVCs by paying more attention to a specific signal, 
the QRS. When diagnosing PVC, anesthesiologists begin by filtering out 
any irrelevant signal and then analyzing the shape and spacing of nearby 
sinus rhythms. To this end, DCAM is a two-step process that denoises a 
given ECG signal with CNN in the frequency domain and focuses on the 
contrast of morphologies of the remaining beats. DCAM consists of fDM 
for frequency domain convolution-based denoising and fCAM for contrast 
attention module, formulated by two procedures as 

Y = fDCAM(X)= fCAMfDM(X)=P(fDM(X)+GELU(K − Q)) (1)  

where fDCAM is a transformation mapping from input feature X ∈ RC×S to 
output feature Y ∈ RC×S , where C represents the channel and S repre
sents the signal length. fDM(X) is the denoised output from the original 
feature X. The subtraction between feature maps of K ∈ RC×1 and Q ∈
RC×1 extracted by each group CNN (GCNN) [35] is combined with 
fDM(X) after Gaussian error linear unit (GELU) activation is applied. 
Finally, the recalibration feature P ∈ RC×S is multiplied to obtain the 
output feature Y, as shown in Equation (1) and Fig. 1. 

2.1.1. Denoise module (fDM) 
The fDM is designed for denoising based on the fast Fourier transform 

(FFT) with convolutional operations [36,37], as an imaginary process by 
which an anesthesiologist ignores noise and artifacts before diagnosing 
an ECG by considering the time intervals between beats. As shown in 
Fig. 1(a), our implementation of fDM is based on channel-wise FFT. fDM 
consists of a three-step procedure to remove the noise from the input 
signal X. First, we performed an FFT on the signal to convert it from the 
time domain to the frequency domain. The FFT of a real signal is con
jugate symmetric, the right half of the results can be derived from the 
left half. Therefore, we use the right FFT (rFFT) algorithms to reduce the 
complexity and calculate the FFT. Because the result of the signal in the 
frequency domain consists of real and imaginary parts, connecting these 
two doubles the number of channels. Second, we applied a convolutional 
layer followed by a normalization layer and a GELU activation function. 
This convolutional layer acted as a filter that reduced the noise level 
while preserving the signal features [36]. The normalization layer 
ensured that the output had a stable distribution and scale. The GELU 
activation function introduced non-linearity and improved the perfor
mance of the convolutional layer. Third, we performed an inverse rFFT 
on the output of the previous step to convert it back to the time domain. 
In the inverse rFFT process, we again divided the channel by 1/2 to 
separate the real and imaginary parts, and finally obtained the result of 
fDM(X) ∈ RC×S, which is a denoised signal that retains the original in
formation and quality. 

2.1.2. Contrast attention module (fCAM) 
The fCAM extracts the contrast features of the K and Q maps of the 

denoised signal fDM(X) and then recalibrates the signal. Fig. 1(b) 
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illustrates fCAM, which extracts objects of interest and their context for 
comparison and enhances the original signal feature. Our module was 
inspired by Attend-and-Compare (ACM) [38], a state-of-the-art method 
for difference modeling. Compared to ACM, our fCAM extracts feature 
maps K and Q without normalizing the input signal. Moreover, recali
bration P was experimentally determined while maintaining the input 
signal channel dimensions. To improve the discrimination between 
PVCs and regular beats, fCAM employs GCNN to learn the contrast be
tween K and Q. GCNN is a type of CNN that divides the input channels 
into G groups and performs convolution on each group separately. This 
allows GCNNs to emphasize different features of PVCs at K and normal 
sinus rhythms at Q in a given signal. Moreover, GCNNs can reduce the 
computational cost and increase model diversity by adjusting the G 
parameter. The input signal is split into G groups along the channel 
dimension, and each group undergoes convolution independently. The 
output of the GCNNs is passed through a SoftMax layer and batch-wise 
matrix production by fDM(X) and the matrix to obtain K and Q, respec
tively. Contrast attention is achieved by adding K − Q ∈ RC×1 to fDM(X)
to obtain the contrast-enhanced feature fDM(X) + K− Q ∈ RC×S. Finally, 
this contrast attention is multiplied by the recalibrating feature P to 
obtain the final output Y. Our channel recalibrating feature P was 
defined as P = GCNN◦GELU◦GCNN(fDM(X)). The resulting feature vec
tor P will be multiplied by fDM(X) + K− Q to scale down certain channel 
information. P represents which channels to attend to for the task. 

2.2. Experimental settings 

2.2.1. Preprocessing 
To test model on multiple datasets, consistent preprocessing was 

applied to the input ECG signals. First, we resampled all signals to 250 
Hz, which was the best sampling rate in the initial experiment of the 
seven datasets, and used segments of 1280 samples (5.12 s) as input 
[39]. The segment length was also chosen depending on the perfor
mance of PVC detection models, and the results of our initial trials are 
shown in appendix Fig. A1. Then, we applied the fifth-order Butterworth 
bandpass filter at 0.5–40 Hz to remove baseline wandering [39,40]. 

Third, we normalized and standardized the ECG signals, as their 
amplitude varied depending on the variations of the patient, electrode 
placements, and measuring device. Finally, Z-score normalization was 
applied to standardize the voltage values. This is more resilient to out
liers than min-max normalization, which can distort the shape of the 
signal if it contains artifacts [39]. 

2.2.2. Baseline PVC detection model 
This session describes the baseline model architecture for PVC 

detection with DCAM. We used the 1D U-Net [22] architecture, a typical 
segmentation network, as a baseline model, as shown in Fig. 2. The 
encoder was given three variants, including VGG19 [41], ResNet34 
[42], and DenseNet121 [43]. 1D U-Nets with these different encoders 
were used to examine whether any encoder structure with or without 
DCAM provides a balanced performance gain for DCAM. The default 
encoder was VGG19 with simply stacked convolutional layers. To model 
contextual information at various levels of feature representation, we 
inserted multiple DCAMs into the encoder network. When DCAM was 
applied to the encoder, it was inserted at the end of each encoder layer 
for a total of five. To compare the performances of DCAM and 
CNN-based attention modules on a 1D U-Net, models with CBAM, 
NLNN, SE, and ACM added to the same location were evaluated. 

2.2.3. Postprocessing 
Our proposed architecture takes a single lead ECG signal as input and 

outputs two channels of QRS and PVC results to simultaneously produce 
beat-wise QRS and PVC results. A sigmoid function was applied to the 
last output value of the model to have a value between 0 and 1 and 
binarized with a 0.5 threshold for both QRS and PVC. Post-processing 
reduced false positives for PVCs by removing cases smaller than a 0.6- 
s interval from the binarized segmentation results. When evaluating 
beat-wise PVC detection performance, the temporal threshold was 0.12 
s, which is consistent with previous research [24,25,44]. 

2.2.4. Implementation details 
For training our PVC detection model, we used signal augmentation 

Fig. 1. Schematic of Denoise and Contrast Attention Module (DCAM). The DCAM has two components: (a) a denoising module, fDM that is CNN-based denoising of 
signals in the frequency domain to filters out noise from the input signals and (b) a contrast attention module fCAM that extracts contrastive relations from spatial 
information to focus on the QRS morphology difference between PVCs and normal sinus rhythms. Note: fast Fourier transform, FFT; group convolutional neural net, 
GCNN; Gaussian error linear unit, GELU; normalization, Norm. 
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during training to increase the diversity and robustness of our model. To 
prevent degradation of the signal quality by applying excessive or 
inappropriate augmentation, we used the following augmentation 
methods: 1) adding Gaussian noise of a clean ECG signal to yield a 10 dB 
signal-to-noise ratio to simulate noisy environments [40]; 2) randomly 
resampling the signal within a 5% range from the original sampling rate 
to simulate variations in heart rate [39]; and 3) using NeuroKit2 [45] to 
add realistic artifacts and noise to the signal. We also balanced the 
training dataset between PVC and non-PVC classes using 
under-sampling non-PVC, which weights each sample based on the 
presence or absence of PVC at the segment level and uses these weights 
to balance the samples in batch operation. 

A sliding window approach [46] was used for model inference to 
avoid performance degradation when the proposed model needs to 
evaluate an arbitrarily long ECG signal, which truncates the signal into 
segments with every 1280 sample lengths for training and inference. The 
hyperparameters for the sliding window method were constant 
weightings with a 0.25 overlap ratio [46]. 

Lastly, we used binary cross entropy for the training loss function, 
batch size of 256, and Adam as the optimizer. To ensure fast training of 
the model and repeatability of training, we used a step-learning rate 
scheduler. The initial training rate of 1e-3 was reduced by 10% every 30 
epochs. In addition, early stopping of training was set when the F1-score 
of the validation dataset reached the maximum. We conducted training 
on a single GPU (24 GB) using Python 3.9, Pytorch 1.11, and Pytorch 
Lightning 1.5.0 environments. Training took 1–1.5 h depending on the 
model configuration. 

2.3. Datasets and evaluation protocol 

The seven datasets were used in this study to train and test the 
proposed algorithm for detecting PVCs. We used the Massachusetts 
Institute of Technology and Beth Israel Hospital Arrhythmia database 
(MIT-BIH) [47] for model development, as this dataset contains a variety 
of arrhythmia cases and the annotations per beat were accurately 
labeled. This data was split record-wise into three subsets: training, 
validation, and internal test sets, which were used to train our model, 
tune the hyperparameters, and assess the reference performance of the 
attention module on the seen dataset, respectively (Table A2). 

2.3.1. Model development dataset (MIT-BIH) 
To build our model development dataset, we went through several 

steps (Fig. A1). First, following the recommendations of the Association 
for the Advancement of Medical Instrumentation (AAMI), four records 

(102, 104, 107, and 217) containing paced beats were excluded from the 
experiments, and the remaining 44 recordings of the lead II signal were 
used [48]. Next, we treated fused beats as PVC beats and ignored un
classified and distorted beats from ground truth (GT) based on an 
extended definition of PVC in accordance with our anesthesiologist’s 
opinions and previous studies [49,50]. Third, we removed beat-wise 
annotations that could not be confirmed by lead II alone. As seen in 
the bottom right corner of Fig. A1, QRS beats were annotated even 
though they were not visible due to artifacts in lead II. To discard GT that 
were incorrectly annotated on lead II, we used the Hamiltonian algo
rithm [51] to detect QRS, extracted cases where the GT indicated a QRS, 
but the algorithm did not detect it, and removed the mis-annotation by 
manual review. Table A3 shows how many samples we had before and 
after data curation. 

2.3.2. Evaluation protocol 
Our model evaluation protocol, based on Ivora et al. [25], is pre

sented in Fig. 3. We also used six external datasets for external testing: 1) 
Asan Medical Center Liver Transplant database (AMC-LT), 2) the 3rd 
China Physiological Signal Challenge 2020 database (CPSC2020) [52], 
3) European ST-T database (ES) [53], 4) St. Petersburg Institute of 
Cardiological Technics database (INCART) [54], 5) MIT-BIH Noise 
Stress Test Database (MIT-BIH-NS) [55], and 6) MIT-BIH Supraventric
ular Arrhythmia Database (MIT-BIH-SV) [56]. Table 1 summarizes the 
characteristics of these datasets, including the type, name, lead, number 
of recordings, sampling rate, total number of beats, and number of PVC 
beats. Since MIT-BIH was used for model development, we have detailed 
the dataset refinement process in the MIT-BIH dataset. For the other six 
external test datasets, detailed descriptions of each dataset are provided 
in the appendix material. 

2.3.3. Evaluation metrics 
To evaluate the PVC detection performance of the model, we used 

three metrics: sensitivity, precision, and F1-score. These metrics are suit
able for imbalanced datasets and are commonly used in the literature on 
PVC detection. Sensitivity is the percentage of true positives in positive 
samples. Therefore, the recall rate also indicates the accuracy of avail
able samples for examination. If there are false negatives, recall rate 
decreases. The formula is shown in Equation (2). 

Sensitivity=
TP

TP + FN
(2)  

Where TP is true positive, TN is true negative, FP is false positive, and FN 
is false negative. Precision indicates the accuracy of the available 

Fig. 2. Structure of a PVC detection model (1D U-Net with DCAM). Each attention module was attached to the end of the encoder layer to evaluate improvement of 
model performance. Three different types of encoders including VGG19, ResNet34, DenseNet121 were used. Note: electrocardiogram, ECG; premature ventricular 
contraction, PVC. 
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Fig. 3. Overview of experiment model evaluation protocols. Seven datasets were collected. Among them, the MIT-BIH dataset was used to training our model and for 
internal evaluation. The remaining six datasets were all used for external test evaluation. 

Table 1 
Descriptions of model development and external test datasets.  

Type Dataset Lead Recordings Sampling rate No. beats No. PVC PVC rate (%) 

Training MIT-BIH II 30 360 69,764 5971 8.6 
Validation II 8 360 18,612 373 2.0 
Internal Test II 6 360 13,022 1362 10.5 

Overall 101,398 7706 7.6 

External Test 1) AMC-LT II 436 125 12,535 784 6.3 
2) CPSC2020 II 10 400 895,711 42,075 4.7 
3) ES V4 90 250 789,454 4821 0.6 
4) INCART II 75 257 170,636 20,230 11.9 
5) MIT-BIH-NS II 2 360 12,114 2766 22.8 
6) MIT-BIH-SV II 78 128 172,304 9966 5.8 

Overall 2,052,754 80,642 3.9 

Note: Massachusetts Institute of Technology and Beth Israel Hospital Arrhythmia database, MIT-BIH; Asan Medical Center Liver Transplant database, AMC-LT; the 3rd 
China Physiological Signal Challenge 2020 database, CPSC2020; European ST-T database, ES; St. Petersburg Institute of Cardiological Technics database, INCART; 
MIT-BIH Noise Stress Test Database, MIT-BIH-NS; MIT-BIH Supraventricular Arrhythmia Database, MIT-BIH-SV. 

Table 2 
Comparison of PVC detection performance with the attention module for a total of seven test datasets (one internal test dataset: MIT-BIH, six external test datasets: 
AMC-LT, CPSC2020, ES, INCART, MIT-BIH-NS, and MIT-BIH-SV). Average of five random runs are reported for each setting with standard deviation.  

Metric Encoder Internal test External test dataset 

MIT-BIH AMC-LT CPSC2020 ES INCART MIT-BIH-NS MIT-BIH-SV 

F1-score (primary metric) VGG19 96.1 ± 1.2 84.8 ± 1.0 83.8 ± 1.5 84.3 ± 3.4 93.3 ± 1.3 90.9 ± 0.4 78.7 ± 1.0 
VGG19+CBAM 98.4 ± 1.1 84.3 ± 1.1 90.1 ± 1.2 86.3 ± 3.3 94.2 ± 1.3 89.5 ± 0.4 79.1 ± 1.0 
VGG19+NLNN 99.0 ± 1.1 86.0 ± 1.2 78.8 ± 1.3 84.3 ± 3.6 94.2 ± 1.4 89.4 ± 0.3 81.6 ± 1.1 
VGG19 + SE 99.1 ± 1.1 87.9 ± 1.1 81.3 ± 1.2 88.6 ± 3.3 95.0 ± 1.3 90.3 ± 0.4 81.4 ± 1.0 
VGG19 + ACM 98.7 ± 1.2 85.2 ± 1.2 88.6 ± 1.2 83.2 ± 3.5 94.0 ± 1.2 92.6 ± 0.5 81.2 ± 1.2 
VGG19+DCAM (Ours) 99.0 ± 1.2 88.1 ± 0.9 89.6 ± 1.3 89.6 ± 3.2 94.8 ± 1.1 91.2 ± 0.3 82.2 ± 1.1 

Sensitivity VGG19 92.6 ± 3.3 79.7 ± 2.4 78.7 ± 2.3 78.2 ± 4.5 88.5 ± 1.2 87.1 ± 1.7 77.2 ± 3.6 
VGG19+CBAM 97.0 ± 3.4 79.3 ± 2.3 88.2 ± 2.4 81.1 ± 4.3 89.9 ± 1.3 85.3 ± 1.6 69.2 ± 3.4 
VGG19+NLNN 98.1 ± 3.4 81.6 ± 2.3 75.1 ± 2.6 81.0 ± 4.4 90.0 ± 1.2 84.5 ± 1.6 75.9 ± 3.4 
VGG19 + SE 98.3 ± 3.5 85.7 ± 2.3 77.1 ± 2.5 84.3 ± 4.2 91.2 ± 1.3 86.6 ± 1.7 82.1 ± 3.5 
VGG19 + ACM 97.6 ± 3.4 86.2 ± 2.4 94.0 ± 2.5 89.9 ± 4.5 89.9 ± 1.4 89.7 ± 1.6 87.0 ± 3.6 
VGG19+DCAM (Ours) 98.2 ± 3.4 85.3 ± 2.4 93.8 ± 2.4 84.8 ± 4.2 91.0 ± 1.3 88.8 ± 1.6 85.7 ± 3.5 

Precision VGG19 99.9 ± 0.1 90.8 ± 2.5 89.5 ± 4.6 90.4 ± 2.1 98.6 ± 0.1 95.0 ± 3.4 82.4 ± 4.3 
VGG19+CBAM 99.9 ± 0.1 90.1 ± 2.5 92.1 ± 4.3 92.1 ± 2.0 98.9 ± 0.1 94.2 ± 3.4 92.4 ± 4.3 
VGG19+NLNN 99.9 ± 0.1 90.8 ± 2.7 82.9 ± 4.5 87.8 ± 2.2 98.8 ± 0.1 94.9 ± 3.5 88.2 ± 4.6 
VGG19 + SE 99.9 ± 0.1 90.2 ± 2.6 85.4 ± 4.4 93.4 ± 2.1 99.2 ± 0.1 94.3 ± 3.6 80.7 ± 4.4 
VGG19 + ACM 99.9 ± 0.1 84.2 ± 2.7 83.8 ± 4.7 80.4 ± 2.6 98.6 ± 0.1 95.7 ± 3.5 76.1 ± 4.6 
VGG19+DCAM (Ours) 99.9 ± 0.1 92.1 ± 2.7 85.7 ± 4.5 95.0 ± 2.1 99.0 ± 0.1 96.5 ± 3.8 78.8 ± 4.5 

The best results are highlighted in bold. 

K. Shin et al.                                                                                                                                                                                                                                     



Computers in Biology and Medicine 166 (2023) 107532

6

samples for examination. If there are many false positives, the precision 
rate will decrease. The formula is given in Equation (3). 

Precision=
TP

TP + FP
(3) 

We utilized the F1-score, which is the harmonic mean of sensitivity 
and precision in a single value, as a primary metric of model performance 
balance. The formula is shown in Equation (4). 

F1 − score =
TP + TN

TP + FN + FP + TN
(4) 

To compare the performances of models impartially, we trained 
them with a fixed seed and configured our model to be deterministic so 
that it always outputs the same value for the same input. We repeated 
the experiment five times with variations of the random seed and 
recorded the mean and standard deviation of the performance metrics. 

3. Result 

3.1. Effect of DCAME 

We compared the change in PVC detection performance with and 
without DCAM in the PVC detection model. Table 2 shows the com
parison of PVC detection performance in a 1D U-Net based on the 
VGG19 encoder with various attention modules across seven test data
sets. The evaluated convolution-based state-of-the-art attention modules 
were CBAM, SE, NLNN, and ACM. All the attention modules attached to 
the VGG19 encoder improved PVC detection performance in our inter
nal test dataset. When evaluating the performance of the PVC detection 
model when five attention modules are attached, including the baseline 
VGG19 encoder, VGG19+DCAM achieved the highest F1-score on four 
out of six external datasets. Furthermore, VGG19+DCAM is the only 
attentional module to improve F1-score on all seven test datasets, 
including all internal and external datasets, compared to VGG19. 
VGG19+DCAM improved the F1-score of MIT-BIH (+2.9), AMC-LT 
(+3.3), CPSC2020 (+5.8), ES (+5.3), INCART (+1.5), MIT-BIH-NS 
(+0.2), and MIT-BIH-SV (+3.5) compared to VGG19. On the other 
hand, other attention modules, including ACM, tend to increase the F1- 
score, but do not necessarily guarantee improved F1-score performance. 
For example, VGG19 + ACM improved the F1-score on AMC-LT (+0.4) 
and CPSC2020 (+4.8), however, it decreased the F1-score on ES (− 1.1). 
VGG19 + ACM had a lower F1-score than VGG + DCAM, as it had a 
relatively higher sensitivity but worse precision. Note that VGG19 + ACM 
has removed the denoising process from VGG19+DCAM, and the reca
libration has been modified, but the improvement in PVC detection 
performance in external tests has not been generalized. VGG19 had the 
lowest performance on all metrics and datasets, demonstrating the 
effectiveness of adding attention modules to improve PVC detection. 
However, the attention modules could not guarantee performance im
provements in the external test. With the exception of DCAM, the 
attention module did not improve F1-score performance on all external 
datasets and was inconsistent. However, DCAM showed an improve
ment in F1-score on all datasets and an improvement in sensitivity and 
precision compared to those without the attention modules. 

3.2. Ablation study 

3.2.1. DCAM architecture 
We evaluated DCAM with different module architectures. Table 3 

shows the F1-score performance of module combinations for PVC 
detection on test datasets. In our tests, the best module configuration for 
the attention module was P(fDM(X) + K − Q), which is a fDM followed by 
fCAM. The results show that DCAM improved the performance of PVC 
detection models on unseen datasets, particularly CPSC2020 and ES, 
where PVC frequency was low and inter-patient variability and artifacts 
were high. Whereas P(X+K − Q) shows that the performance of the 
baseline is worse on ES. This test shows that denoising is essential before 
applying the attention module to improve PVC detection performance 
reliably. 

Recalibration also had an impact on performance, but recalibration 
alone did not consistently improve performance in our tests. The 
P(X+K − Q) module achieves superior performance on four out of seven 
datasets and is comparable to the (X+K − Q) module on the other three 
datasets. The P(X+K − Q) module improved F1-scores on MIT-BIH 
(+1.0), CPSC2020 (+2.3), INCART (+0.7), and MIT-BIH-SV (+3.2), 
but ES performed approximately 1.4 worse than the model without the 
module. 

3.2.2. Effect of G on GCNN in DCAM 
In this study, we performed an ablation study to investigate the 

number of groups G in DCAM and the factors that influence the structure 
of DCAM. Table 4 shows the F1-score of PVC detection performance 
within the number of groups G on GCNN in DCAM with different 
encoder types. The results showed that when applying DCAM, the F1- 
score tended to increase and then decrease in performance as the G 
increased for both internal and external test datasets. The best perfor
mance is achieved by DCAM with the DenseNet121 encoder and G = 8, 
which has an F1-score of MIT-BIH (99.4), AMC-LT (86.5), CPSC2020 
(89.9), ES (88.3), INCART (95.2), MIT-BIH-NS (92.4), and MIT-BIH-SV 
(81.6). For all encoders, the most optimal F1-score was obtained when 
G = 4 or G = 8, with no significant difference in performance between 
encoders. The optimal G value for DCAM that we found through 
experimentation was 8. 

3.3. Qualitative result using attention map 

To demonstrate the effectiveness of DCAM, we visualize an interest 
map comparing objects of interest and their context with CAM. CAM is a 
modification of the attention module based on ACM, which modified the 
recalibration structure for PVC detection tasks. The CAM learns to 
attend to different regions in a way that maximizes performance on the 
given task. Conversely, DCAM is an application of CAM with denoising 
based on FFT convolution. Rather than simply applying attention, 
DCAM is inspired by the process by which anesthesiologists first ignore 
artifacts in the sinus when reading a PVC. We visualized GTs and 
attention maps to see if DCAM produces an attention map that maxi
mizes performance by highlighting interpretable beats. 

Both DCAM and CAM learn to utilize the PVC region as the object of 
interest and the normal sinus rhythms region as its context; however, 

Table 3 
F1-score of PVC detection based on DCAM architectures.  

Encoder Module Internal test External test dataset 

MIT-BIH AMC-LT CPSC2020 ES INCART MIT-BIH-NS MIT-BIH-SV 

VGG19 None 97.4 ± 1.2 86.2 ± 1.0 77.5 ± 1.4 85.1 ± 3.4 92.6 ± 1.3 90.9 ± 0.4 78.7 ± 1.0 
X+ K − Q 98.2 ± 1.3 85.9 ± 0.9 79.6 ± 1.2 84.7 ± 3.2 93.2 ± 1.2 91.2 ± 0.5 81.6 ± 1.1 
P(X + K − Q) = fCAM 98.4 ± 1.3 86.2 ± 1.1 79.8 ± 1.3 83.7 ± 3.3 93.1 ± 1.3 91.6 ± 0.4 81.9 ± 1.2 
fDM(X)+ K − Q 97.8 ± 1.2 86.1 ± 1.0 83.6 ± 1.3 84.9 ± 3.3 94.4 ± 1.1 92.6 ± 0.3 82.2 ± 1.0 
P(fDM(X) + K − Q) = fDCAM 99.0 ± 1.2 88.1 ± 0.9 89.6 ± 1.3 89.6 ± 3.2 94.8 ± 1.1 91.2 ± 0.3 82.2 ± 1.1 

The best results are highlighted in bold. 
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DCAM’s attentional map is more precisely localized. The attention maps 
with DCAM and CAM applied for the two cases are visualized in Fig. 4. 
As shown in cases #1 and #2, CAM extracts PVC candidates from a wide 
variety of locations in K, while DCAM attaches K maps to relatively 
precise PVC locations. Furthermore, both CAM and DCAM detect normal 
sinus rhythms in the Q map, but CAM is less accurate than DCAM. This 
observation is consistent with our intuition that PVC detection can be 

more clearly distinguished by contrast after denoising, which DCAM 
learns automatically. This clearly demonstrates that the context of PVC 
and non-PVC is different after denoising, which aligns well with the 
design principles of DCAM. 

Table 4 
F1-score of PVC detection within number of group convolution in DCAM with encoder type.  

Encoder No. GCNN (G) Internal test External test dataset 

MIT-BIH AMC-LT CPSC2020 ES INCART MIT-BIH-NS MIT-BIH-SV 

VGG19+DCAM None 97.4 ± 1.2 86.2 ± 1.0 77.5 ± 1.5 85.1 ± 3.4 92.6 ± 1.3 90.9 ± 0.4 78.7 ± 1.0 
4 98.2 ± 1.0 87.4 ± 0.9 84.5 ± 1.3 88.4 ± 3.7 94.9 ± 1.0 91.2 ± 0.4 81.9 ± 1.0 
8 99.0 ± 1.2 88.1 ± 0.9 89.6 ± 1.3 89.6 ± 3.2 94.8 ± 1.1 91.2 ± 0.3 82.2 ± 1.1 
16 99.0 ± 1.2 88.1 ± 0.9 89.3 ± 1.3 89.1 ± 3.2 95.2 ± 1.1 91.2 ± 0.3 82.0 ± 1.1 
32 98.3 ± 1.1 85.5 ± 1.0 80.5 ± 1.4 86.5 ± 3.2 94.4 ± 1.2 90.6 ± 0.4 79.0 ± 1.2 

ResNet34+DCAM None 97.0 ± 1.3 84.3 ± 0.8 85.4 ± 1.1 80.9 ± 3.6 91.9 ± 1.0 91.0 ± 0.4 76.6 ± 1.1 
4 97.7 ± 1.3 86.3 ± 1.1 86.3 ± 1.2 84.6 ± 3.3 93.5 ± 1.0 91.5 ± 0.3 78.6 ± 1.2 
8 97.8 ± 1.2 87.5 ± 0.9 90.0 ± 1.2 84.9 ± 3.4 94.4 ± 1.0 92.6 ± 0.4 82.2 ± 1.1 
16 98.2 ± 1.3 85.7 ± 1.0 82.7 ± 1.4 87.8 ± 3.5 92.8 ± 1.1 91.1 ± 0.5 79.1 ± 1.2 
32 98.4 ± 1.3 86.2 ± 0.9 81.7 ± 1.3 87.4 ± 3.3 94.8 ± 0.9 92.0 ± 0.4 80.5 ± 1.1 

DenseNet121+DCAM None 96.9 ± 1.1 85.1 ± 1.0 84.4 ± 1.2 86.8 ± 3.5 93.6 ± 1.2 90.8 ± 0.4 77.9 ± 1.1 
4 98.6 ± 1.2 86.0 ± 0.9 87.9 ± 1.2 86.9 ± 3.4 93.3 ± 1.1 92.2 ± 0.4 81.4 ± 1.0 
8 99.4 ± 1.1 86.5 ± 1.0 89.9 ± 1.1 88.3 ± 3.5 95.2 ± 1.2 92.4 ± 0.3 81.6 ± 1.1 
16 97.1 ± 1.1 86.7 ± 1.1 79.9 ± 1.2 88.4 ± 3.4 95.8 ± 1.2 91.1 ± 0.3 73.3 ± 1.0 
32 99.3 ± 1.2 86.2 ± 1.2 87.8 ± 1.3 86.4 ± 3.6 95.3 ± 1.1 91.6 ± 0.4 78.9 ± 1.1 

The best results are highlighted in bold. 

Fig. 4. Visualized attention maps for the PVC detection task. The 3rd layer of VGG19+DCAM was chosen. In GT, the red triangle indicates the location of the PVC. 
The attention map is darker with a larger gradient, the K map focuses on candidate PVCs, and the Q map focuses on normal sinus rhythms. 
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3.4. Performance comparison with previous studies 

We compared three studies, including our own, in which an external 
model evaluation of PVC detection models was conducted, as shown in 
Table 5. These studies all used 1D U-Net to detect PVCs, and presented 
performance tests with datasets other than the trained data, with the 
datasets and evaluation metrics listed in each case for comparison. The 
proposed model (VGG19+DCAM) outperforms the other methods on 
most datasets and metrics. Our model achieves the highest F1-score on 
the CPSC2020 (89.1), ES (88.7), and INCART (94.8) datasets, and the 
second highest F1-score on the MIT-SV dataset (81.0). The proposed 
model also achieves the highest sensitivity on the CPSC2020 (90.6), ES 
(90.4), and MIT-SV (86.1) datasets and the second highest sensitivity on 
the INCART dataset (84.1). The proposed model also achieves the 
highest precision on the ES dataset (97.9), and the second highest pre
cision on the CPSC2020 (85.2) and MIT-SV (81.9) datasets. Conse
quently, the proposed model (VGG19+DCAM) is a reliable and robust 
attention module for PVC detection in ECG signals and can generalize 
well to different datasets with varying characteristics and noise levels. 

4. Discussion 

We present a novel DCAM that can enhance the performance of CNN- 
based PVC detection algorithms on unseen ECG lead II signals. To 
demonstrate the effectiveness of DCAM, we evaluated the performance 
of the PVC detection model on six external test datasets. The results 
showed that DCAM improved the external test F1-score over baseline for 
all three encoder structures of the segmentation model used in the test. 
This can be interpreted as extracting representative features from signals 
where PVCs are difficult to detect, as an algorithm that mimics the 
principles by which experts detect PVCs. 

The PVC detection model with DCAM has achieved F1-scores above 
80 in all external test datasets, which is remarkably high considering the 
external evaluation. The datasets with low F1-scores, such as AMC-LT, 
ES, and MIT-BIH-SV, were challenging, the data contained many arti
facts, and the PVC prevalence was very low. Particularly, the AMC-LT 
dataset contains several AFs that are morphologically similar to PVCs, 
as well as noise and artifacts that can occur in the operating room. It is 
very encouraging that even with these signals, DCAM was able to reli
ably increase the detection performance of the deep learning model. 
However, some of the state-of-the-art attention modules we evaluated 
did not show a trend toward improved performance on all external test 

datasets, although they did improve on internal test dataset. According 
to Table 2, one should exercise caution when applying the attention 
module to deep learning models since it can lead to overfitting internal 
dataset features. 

The impact of the denoising module f DM applied prior to difference 
attentions is substantial (Table 3). It is evident that our proposed DCAM 
surpasses the baseline model on unseen datasets. The performance of 
f DM +K-Q was better than f CAM with recalibration P, and additionally, 
the F1-score in external validation was improved in DCAM with recali
bration P. Also, our ablation study found G = 8 to be optimal. It’s a 
common observation in various tasks that increasing the Group 
parameter to a reasonable extent enhances performance, but any further 
increase may degrade it. Interestingly, regardless of the encoder type 
used among three different types tested, G = 8 was generally found 
optimal. Among these, VGG19 as an encoder yielded the most distinct 
results. This can be speculated as due to VGG19 not having skip con
nections in its encoder structure unlike ResNet34 and DenseNet121, 
which could lead to more consistent outcomes. 

To demonstrate the effectiveness of the denoise process in DCAM, we 
utilized attention maps with and without fDM to visualize where K and Q 
pay attention. We were able to get a more intuitive understanding by 
visualizing the attention map of DCAM in the fourth layer of the encoder 
(Fig. 4.). Without denoising, both K and Q show activity in multiple 
attentional regions. With DCAM, however, attention is concentrated in 
the R peak within the attentional map, resulting in a sharp contrast 
between K and Q. Based on these visualizations, it can be interpreted 
that performance can be improved if frequency-based convolution is 
applied before the attention mechanism is triggered. 

The main goal of this research was to develop and validate an ac
curate and robust PVC detection model. Accurate detection of PVCs is 
crucial to proactively diagnose and prescribe medications for patients 
with cardiac arrhythmias [2]. Despite deep learning models used for 
PVC detection often demonstrating high performance on internal test 
datasets, they exhibit limited robustness and balance when applied to 
external datasets. For these models to be clinically viable, they must 
perform well on unseen datasets that encapsulate the true variability 
and complexity inherent in ECG signals [13]. This highlights the ne
cessity for an evaluation protocol ensuring fair assessment across diverse 
data sources. 

In the busy clinical setting of the operating theatre, early recognition 
and timely intervention for arrhythmia will enhance patient outcome no 
doubt. For example, we previously reported the incidence of atrioven
tricular block and atrial fibrillation as 5.0% and 1.3%, respectively, 
during liver transplantation surgery [57,58]. Although the incidence 
seems relatively low, their prognosis was significantly poor. In this 
occasion, AI powered surveillance systems may efficiently screen the 
potential vulnerable patients, eventually facilitating resource redistri
bution of hospitals and enhancing the patient’s well-being. We believe 
this is a very important point of view because many healthcare providers 
complain about burnout who receive endless requests for vigilant 
attention and labor-intensive care from their clinical settings. Inspired 
by the decision method of trained clinicians, we propose a model that 
mimics the way human experts diagnose PVC, such as ignoring noise and 
context recognition. This denoising process differs from traditional 
denoising method with FFTs in that it is trainable. Recognizing the 
context implies focusing on differences in the morphologies and in
tervals of the remaining beats, which detect PVC with high accuracy 
even on new, unseen data. In this study, we discovered that DCAM is 
instrumental in developing a balanced PVC detection model. Simulta
neously increasing sensitivity and precision is a challenging task due to 
their tradeoff, yet our DCAM enhanced the F1-score on unseen datasets, 
likely owing to generalized representation learning. The improvement 
of PVC detection F1-score using DCAM will significantly contribute to 
detecting cardiac diseases at their early stages. 

This study has some limitations that need to be acknowledged. First, 
our DCAM did not sufficiently detect PVC in noise and artifacts 

Table 5 
Comparing performance to previous studies that externally tested PVC 
detection.  

External test 
dataset 

Train 
dataset 

Author F1- 
score 

Sensitivity Precision 

MIT-BIH-SV MDT 
(private) 

1 79.0 – – 

MIT-BIH 2 85.0 85.4 84.50 
3 
(ours) 

82.2 85.7 78.8 

CPSC2020 MIT-BIH 2 – 80.7 – 
3 
(ours) 

89.6 93.8 85.7 

ES MDT 
(private) 

1 80.0 – – 

MIT-BIH 3 
(ours) 

89.6 84.8 95.0 

INCART MDT 
(private) 

1 69.0 – – 

MIT-BIH 3 
(ours) 

94.8 91.0 99.0 

The best results are highlighted in bold. 
Note: 1Ivora et al.; 2Petryshak et al.; 3Proposed model (VGG19+DCAM). 
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contained in ECGs. Our clinician confirmed that the sensitivity perfor
mance increased by 3.2 if noisy signals were ignored. The results also 
show that the performance varies across external test datasets, which 
have different characteristics such as PVC prevalence, noise level, and 
other arrhythmia symptoms. For example, CPSC2020 has the lowest F1- 
score among all datasets, which contains many artifacts as it is a 24-h 
Holter ECG dataset. However, INCART has the highest F1-score among 
the external datasets, because the dataset is very well refined. Second, 
we have demonstrated that DCAM improves PVC detection performance 
in six external test datasets, but we have not been able to validate it in 
other tasks. Relatively speaking, the detection of PVCs can be easily 
determined by comparing the surrounding signals, which needs to be 
verified in other more challenging tests in the future. Third, due to 
resource constraints, we were unable to perform a wide range of tests 
and extensively optimize model parameters. We used the 1D U-Net as 
the base model to evaluate DCAM and different attention modules under 
limited conditions. We were not able to study the optimization of PVC 
detection performance based on the location and number of attention 
modules. In addition, the state-of-the-art attention modules used the 
optimal values suggested by an existing study and are not optimized for 
our task. Fourth, our model cannot detect arrhythmic syndromes other 
than PVC in detail. The focus of our study was to accurately diagnose 
PVC and we did not address other disorders. However, it would be 
desirable to study non-PVC indicators along with PVC symptoms to 
detect PVC more accurately and comprehensively. 

5. Conclusion 

In this paper, we proposed a novel DCAM that enhances the perfor
mance of a 1D U-Net for detecting PVCs in unseen electrocardiogram 
signals. The DCAM consists of: a CNN-based trainable denoising module 
that filters out noise from the input signals, and a contrast attention 
module that focuses on the QRS morphologies and captures the contrast 
between PVCs and normal sinus rhythms. We evaluated our DCAM on 
six unseen datasets with different encoder types and compared it with 
existing attention methods. Our results showed that our DCAM achieved 
superior F1-score performance across all external test datasets and en
coders and demonstrated that the attention module should be denoised 
prior to application to robustly improve detection performance. Our 
DCAM is expected to contribute to the advancement of deep learning 
models for cardiac arrhythmia detection and diagnosis, as well as other 
biomedical signal processing applications. 

Funding 

This research was supported by a grant from the Korea Health 
Technology R&D Project through the Korea Health Industry Develop
ment Institute (KHIDI), funded by the Ministry of Health & Welfare, 
Republic of Korea (grant number: HR20C0026). 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compbiomed.2023.107532. 

References 

[1] R.J. Simpson Jr., W.E. Cascio, P.J. Schreiner, R.S. Crow, P.M. Rautaharju, G. Heiss, 
Prevalence of premature ventricular contractions in a population of African 
American and white men and women: the Atherosclerosis Risk in Communities 
(ARIC) study, Am. Heart J. 143 (2002) 535–540. 

[2] C.H. Kwon, S.-H. Kim, Intraoperative management of critical arrhythmia, Korean 
Journal of Anesthesiology 70 (2017) 120–126. 

[3] D. Muser, P. Santangeli, S.A. Castro, R. Casado Arroyo, S. Maeda, D.A. Benhayon, 
I. Liuba, J.J. Liang, M.M. Sadek, A. Chahal, Risk stratification of patients with 
apparently idiopathic premature ventricular contractions: a multicenter 
international CMR registry, Clinical Electrophysiology 6 (2020) 722–735. 

[4] U. Meyerfeldt, A. Schirdewan, M. Wiedemann, H. Schütt, F. Zimmerman, F. Luft, 
R. Dietz, The mode of onset of ventricular tachycardia: a patient-specific 
phenomenon, Eur. Heart J. 18 (1997) 1956–1965. 

[5] R.J. Myerburg, Sudden cardiac death: epidemiology, causes, and mechanisms, 
Cardiology 74 (1987) 2–9. 

[6] I.S. Murthy, M.R. Rangaraj, New concepts for PVC detection, IEEE (Inst. Electr. 
Electron. Eng.) Trans. Biomed. Eng. (1979) 409–416. 

[7] Y. Jung, H. Kim, Detection of PVC by using a wavelet-based statistical ECG 
monitoring procedure, Biomed. Signal Process Control 36 (2017) 176–182. 

[8] M.L. Talbi, P. Ravier, Detection of PVC in ECG signals using fractional linear 
prediction, Biomed. Signal Process Control 23 (2016) 42–51. 

[9] R.C.-H. Chang, C.-H. Lin, M.-F. Wei, K.-H. Lin, S.-R. Chen, High-precision real-time 
premature ventricular contraction (PVC) detection system based on wavelet 
transform, Journal of Signal Processing Systems 77 (2014) 289–296. 

[10] K. Yasin, Classification of PVC beat in ECG using basic temporal features, Balkan 
Journal of Electrical and Computer Engineering 6 (2018) 78–82. 

[11] W.H. Chang, K.-P. Lin, S.-Y. Tseng, ECG analysis based on Hilbert transform 
descriptor, in: Proceedings of the Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, IEEE, 1988, pp. 36–37. 

[12] A. Pachauri, M. Bhuyan, Wavelet and energy based approach for PVC detection, in: 
2009 International Conference on Emerging Trends in Electronic and Photonic 
Devices & Systems, IEEE, 2009, pp. 258–261. 

[13] K.J. Ruskin, C. Corvin, S.C. Rice, S.R. Winter, Autopilots in the operating room: 
safe use of automated medical technology, Anesthesiology 133 (2020) 653–665. 

[14] Y. Cao, W. Liu, S. Zhang, L. Xu, B. Zhu, H. Cui, N. Geng, H. Han, S.E. Greenwald, 
Detection and localization of myocardial infarction based on multi-scale ResNet 
and attention mechanism, Front. Physiol. (2022) 24. 

[15] F. Murat, O. Yildirim, M. Talo, U.B. Baloglu, Y. Demir, U.R. Acharya, Application of 
deep learning techniques for heartbeats detection using ECG signals-analysis and 
review, Comput. Biol. Med. 120 (2020), 103726. 

[16] Z. Ebrahimi, M. Loni, M. Daneshtalab, A. Gharehbaghi, A review on deep learning 
methods for ECG arrhythmia classification, Expert Syst. Appl. X 7 (2020), 100033. 

[17] F.-y. Zhou, L.-p. Jin, J. Dong, Premature ventricular contraction detection 
combining deep neural networks and rules inference, Artif. Intell. Med. 79 (2017) 
42–51. 

[18] L.-H. Wang, L.-J. Ding, C.-X. Xie, S.-Y. Jiang, I.-C. Kuo, X.-K. Wang, J. Gao, P.- 
C. Huang, P.A.R. Abu, Automated classification model with OTSU and CNN 
method for premature ventricular contraction detection, IEEE Access 9 (2021) 
156581–156591. 

[19] M. Naz, J.H. Shah, M.A. Khan, M. Sharif, M. Raza, R. Damaševičius, From ECG 
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